Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells

نویسندگان

  • Elena G. Popa
  • Vítor E. Santo
  • Márcia T. Rodrigues
  • Manuela E. Gomes
  • Esmaiel Jabbari
چکیده

Magnetic nanoparticles (MNPs) are attractive tools to overcome limitations of current regenerative medicine strategies, demonstrating potential to integrate therapeutic and diagnostic functionalities in highly controlled systems. In traditional tissue engineering (TE) approaches, the MNPs association with stem cells in a three-dimensional (3D) template offers the possibility to achieve a mechano-magnetic responsive system, enabling remote control actuation. Herein, we propose to study the role of MNPs integrated in κ-carrageenan (κC) hydrogels in the cellular response of human adipose-derived stem cells (hASCs) aiming at cartilage TE applications. The results indicated that the concentration of MNPs in the κC hydrogels influences cellular behavior, tuning a positive effect on cell viability, cell content and metabolic activity of hASCs, with the most promising outcomes found in 5% MNP-κC matrices. Although hASCs laden in MNPs-freeand MNPs-κC hydrogels showed similar metabolic and proliferation levels, MNPs κC hydrogels under magnetic actuation evidenced an instructive effect on hASCs, at a gene expression level, towards chondrogenic phenotype even in basic medium cultures. Therefore, the MNPs-based systems developed in this study may contribute to advanced strategies towards cartilage-like engineered substitutes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

Comparison of the efficacy of Piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds

Objective(s):The aim of this study was to compare the chondrogenic induction potential of Piascledine and TGF-β1 on adipose-derived stem cells (ADSCs) in fibrin and fibrin-alginate scaffolds.  Materials and Methods: Human subcutaneous adipose tissues were harvested from three patients who were scheduled to undergo liposuction. Isolated ADSCs were proliferated in a culture medium. Then, the cell...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

The Effect of Platelet Rich Plasma on Chondrogenic Differentiation of Human Adipose Derived Stem Cells in Transwell Culture

  Objective(s): Platelet-rich plasma (PRP) has recently emerged as a promising strategy in regenerative medicine due to its multiple endogenous growth factors. Little is known about the role of PRP as a promoter in chondrogenesis of human adipose derived stem cells (hADSCs). The aim of this study was to determine whether PRP may be considered as a natural and easy achievable source o...

متن کامل

Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro

  Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016